Source code for mmcv.runner.hooks.optimizer

# Copyright (c) OpenMMLab. All rights reserved.
import copy
from collections import defaultdict
from itertools import chain

from torch.nn.utils import clip_grad

from mmcv.utils import TORCH_VERSION, digit_version
from ..dist_utils import allreduce_grads
from ..fp16_utils import LossScaler, wrap_fp16_model
from .hook import HOOKS, Hook

try:
    # If PyTorch version >= 1.6.0, torch.cuda.amp.GradScaler would be imported
    # and used; otherwise, auto fp16 will adopt mmcv's implementation.
    from torch.cuda.amp import GradScaler
except ImportError:
    pass


@HOOKS.register_module()
class OptimizerHook(Hook):

    def __init__(self, grad_clip=None):
        self.grad_clip = grad_clip

    def clip_grads(self, params):
        params = list(
            filter(lambda p: p.requires_grad and p.grad is not None, params))
        if len(params) > 0:
            return clip_grad.clip_grad_norm_(params, **self.grad_clip)

    def after_train_iter(self, runner):
        runner.optimizer.zero_grad()
        runner.outputs['loss'].backward()
        if self.grad_clip is not None:
            grad_norm = self.clip_grads(runner.model.parameters())
            if grad_norm is not None:
                # Add grad norm to the logger
                runner.log_buffer.update({'grad_norm': float(grad_norm)},
                                         runner.outputs['num_samples'])
        runner.optimizer.step()


if (TORCH_VERSION != 'parrots'
        and digit_version(TORCH_VERSION) >= digit_version('1.6.0')):

    @HOOKS.register_module()
    class Fp16OptimizerHook(OptimizerHook):
        """FP16 optimizer hook (using PyTorch's implementation).

        If you are using PyTorch >= 1.6, torch.cuda.amp is used as the backend,
        to take care of the optimization procedure.

        Args:
            loss_scale (float | str | dict): Scale factor configuration.
                If loss_scale is a float, static loss scaling will be used with
                the specified scale. If loss_scale is a string, it must be
                'dynamic', then dynamic loss scaling will be used.
                It can also be a dict containing arguments of GradScalar.
                Defaults to 512. For Pytorch >= 1.6, mmcv uses official
                implementation of GradScaler. If you use a dict version of
                loss_scale to create GradScaler, please refer to:
                https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler
                for the parameters.

        Examples:
            >>> loss_scale = dict(
            ...     init_scale=65536.0,
            ...     growth_factor=2.0,
            ...     backoff_factor=0.5,
            ...     growth_interval=2000
            ... )
            >>> optimizer_hook = Fp16OptimizerHook(loss_scale=loss_scale)
        """

        def __init__(self,
                     grad_clip=None,
                     coalesce=True,
                     bucket_size_mb=-1,
                     loss_scale=512.,
                     distributed=True):
            self.grad_clip = grad_clip
            self.coalesce = coalesce
            self.bucket_size_mb = bucket_size_mb
            self.distributed = distributed
            self._scale_update_param = None
            if loss_scale == 'dynamic':
                self.loss_scaler = GradScaler()
            elif isinstance(loss_scale, float):
                self._scale_update_param = loss_scale
                self.loss_scaler = GradScaler(init_scale=loss_scale)
            elif isinstance(loss_scale, dict):
                self.loss_scaler = GradScaler(**loss_scale)
            else:
                raise ValueError('loss_scale must be of type float, dict, or '
                                 f'"dynamic", got {loss_scale}')

        def before_run(self, runner):
            """Preparing steps before Mixed Precision Training."""
            # wrap model mode to fp16
            wrap_fp16_model(runner.model)
            # resume from state dict
            if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']:
                scaler_state_dict = runner.meta['fp16']['loss_scaler']
                self.loss_scaler.load_state_dict(scaler_state_dict)

        def copy_grads_to_fp32(self, fp16_net, fp32_weights):
            """Copy gradients from fp16 model to fp32 weight copy."""
            for fp32_param, fp16_param in zip(fp32_weights,
                                              fp16_net.parameters()):
                if fp16_param.grad is not None:
                    if fp32_param.grad is None:
                        fp32_param.grad = fp32_param.data.new(
                            fp32_param.size())
                    fp32_param.grad.copy_(fp16_param.grad)

        def copy_params_to_fp16(self, fp16_net, fp32_weights):
            """Copy updated params from fp32 weight copy to fp16 model."""
            for fp16_param, fp32_param in zip(fp16_net.parameters(),
                                              fp32_weights):
                fp16_param.data.copy_(fp32_param.data)

        def after_train_iter(self, runner):
            """Backward optimization steps for Mixed Precision Training. For
            dynamic loss scaling, please refer to
            https://pytorch.org/docs/stable/amp.html#torch.cuda.amp.GradScaler.

            1. Scale the loss by a scale factor.
            2. Backward the loss to obtain the gradients.
            3. Unscale the optimizer’s gradient tensors.
            4. Call optimizer.step() and update scale factor.
            5. Save loss_scaler state_dict for resume purpose.
            """
            # clear grads of last iteration
            runner.model.zero_grad()
            runner.optimizer.zero_grad()

            self.loss_scaler.scale(runner.outputs['loss']).backward()
            self.loss_scaler.unscale_(runner.optimizer)
            # grad clip
            if self.grad_clip is not None:
                grad_norm = self.clip_grads(runner.model.parameters())
                if grad_norm is not None:
                    # Add grad norm to the logger
                    runner.log_buffer.update({'grad_norm': float(grad_norm)},
                                             runner.outputs['num_samples'])
            # backward and update scaler
            self.loss_scaler.step(runner.optimizer)
            self.loss_scaler.update(self._scale_update_param)

            # save state_dict of loss_scaler
            runner.meta.setdefault(
                'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()
else:

[docs] @HOOKS.register_module() class Fp16OptimizerHook(OptimizerHook): """FP16 optimizer hook (mmcv's implementation). The steps of fp16 optimizer is as follows. 1. Scale the loss value. 2. BP in the fp16 model. 2. Copy gradients from fp16 model to fp32 weights. 3. Update fp32 weights. 4. Copy updated parameters from fp32 weights to fp16 model. Refer to https://arxiv.org/abs/1710.03740 for more details. Args: loss_scale (float | str | dict): Scale factor configuration. If loss_scale is a float, static loss scaling will be used with the specified scale. If loss_scale is a string, it must be 'dynamic', then dynamic loss scaling will be used. It can also be a dict containing arguments of LossScaler. Defaults to 512. """ def __init__(self, grad_clip=None, coalesce=True, bucket_size_mb=-1, loss_scale=512., distributed=True): self.grad_clip = grad_clip self.coalesce = coalesce self.bucket_size_mb = bucket_size_mb self.distributed = distributed if loss_scale == 'dynamic': self.loss_scaler = LossScaler(mode='dynamic') elif isinstance(loss_scale, float): self.loss_scaler = LossScaler( init_scale=loss_scale, mode='static') elif isinstance(loss_scale, dict): self.loss_scaler = LossScaler(**loss_scale) else: raise ValueError('loss_scale must be of type float, dict, or ' f'"dynamic", got {loss_scale}')
[docs] def before_run(self, runner): """Preparing steps before Mixed Precision Training. 1. Make a master copy of fp32 weights for optimization. 2. Convert the main model from fp32 to fp16. """ # keep a copy of fp32 weights old_groups = runner.optimizer.param_groups runner.optimizer.param_groups = copy.deepcopy( runner.optimizer.param_groups) state = defaultdict(dict) p_map = { old_p: p for old_p, p in zip( chain(*(g['params'] for g in old_groups)), chain(*(g['params'] for g in runner.optimizer.param_groups))) } for k, v in runner.optimizer.state.items(): state[p_map[k]] = v runner.optimizer.state = state # convert model to fp16 wrap_fp16_model(runner.model) # resume from state dict if 'fp16' in runner.meta and 'loss_scaler' in runner.meta['fp16']: scaler_state_dict = runner.meta['fp16']['loss_scaler'] self.loss_scaler.load_state_dict(scaler_state_dict)
[docs] def copy_grads_to_fp32(self, fp16_net, fp32_weights): """Copy gradients from fp16 model to fp32 weight copy.""" for fp32_param, fp16_param in zip(fp32_weights, fp16_net.parameters()): if fp16_param.grad is not None: if fp32_param.grad is None: fp32_param.grad = fp32_param.data.new( fp32_param.size()) fp32_param.grad.copy_(fp16_param.grad)
[docs] def copy_params_to_fp16(self, fp16_net, fp32_weights): """Copy updated params from fp32 weight copy to fp16 model.""" for fp16_param, fp32_param in zip(fp16_net.parameters(), fp32_weights): fp16_param.data.copy_(fp32_param.data)
[docs] def after_train_iter(self, runner): """Backward optimization steps for Mixed Precision Training. For dynamic loss scaling, please refer `loss_scalar.py` 1. Scale the loss by a scale factor. 2. Backward the loss to obtain the gradients (fp16). 3. Copy gradients from the model to the fp32 weight copy. 4. Scale the gradients back and update the fp32 weight copy. 5. Copy back the params from fp32 weight copy to the fp16 model. 6. Save loss_scaler state_dict for resume purpose. """ # clear grads of last iteration runner.model.zero_grad() runner.optimizer.zero_grad() # scale the loss value scaled_loss = runner.outputs['loss'] * self.loss_scaler.loss_scale scaled_loss.backward() # copy fp16 grads in the model to fp32 params in the optimizer fp32_weights = [] for param_group in runner.optimizer.param_groups: fp32_weights += param_group['params'] self.copy_grads_to_fp32(runner.model, fp32_weights) # allreduce grads if self.distributed: allreduce_grads(fp32_weights, self.coalesce, self.bucket_size_mb) has_overflow = self.loss_scaler.has_overflow(fp32_weights) # if has overflow, skip this iteration if not has_overflow: # scale the gradients back for param in fp32_weights: if param.grad is not None: param.grad.div_(self.loss_scaler.loss_scale) if self.grad_clip is not None: grad_norm = self.clip_grads(fp32_weights) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update( {'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) # update fp32 params runner.optimizer.step() # copy fp32 params to the fp16 model self.copy_params_to_fp16(runner.model, fp32_weights) self.loss_scaler.update_scale(has_overflow) if has_overflow: runner.logger.warning('Check overflow, downscale loss scale ' f'to {self.loss_scaler.cur_scale}') # save state_dict of loss_scaler runner.meta.setdefault( 'fp16', {})['loss_scaler'] = self.loss_scaler.state_dict()