Shortcuts

mmcv.cnn.bricks.hsigmoid 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import warnings

import torch
import torch.nn as nn
from mmengine.registry import MODELS


[文档]@MODELS.register_module() class HSigmoid(nn.Module): """Hard Sigmoid Module. Apply the hard sigmoid function: Hsigmoid(x) = min(max((x + bias) / divisor, min_value), max_value) Default: Hsigmoid(x) = min(max((x + 3) / 6, 0), 1) Note: In MMCV v1.4.4, we modified the default value of args to align with PyTorch official. Args: bias (float): Bias of the input feature map. Default: 3.0. divisor (float): Divisor of the input feature map. Default: 6.0. min_value (float): Lower bound value. Default: 0.0. max_value (float): Upper bound value. Default: 1.0. Returns: Tensor: The output tensor. """ def __init__(self, bias: float = 3.0, divisor: float = 6.0, min_value: float = 0.0, max_value: float = 1.0): super().__init__() warnings.warn( 'In MMCV v1.4.4, we modified the default value of args to align ' 'with PyTorch official. Previous Implementation: ' 'Hsigmoid(x) = min(max((x + 1) / 2, 0), 1). ' 'Current Implementation: ' 'Hsigmoid(x) = min(max((x + 3) / 6, 0), 1).') self.bias = bias self.divisor = divisor assert self.divisor != 0 self.min_value = min_value self.max_value = max_value
[文档] def forward(self, x: torch.Tensor) -> torch.Tensor: x = (x + self.bias) / self.divisor return x.clamp_(self.min_value, self.max_value)