Shortcuts

CenterCrop

class mmcv.transforms.CenterCrop(crop_size: Union[int, Tuple[int, int]], auto_pad: bool = False, pad_cfg: dict = {'type': 'Pad'}, clip_object_border: bool = True)[源代码]

Crop the center of the image, segmentation masks, bounding boxes and key points. If the crop area exceeds the original image and auto_pad is True, the original image will be padded before cropping.

Required Keys:

  • img

  • gt_seg_map (optional)

  • gt_bboxes (optional)

  • gt_keypoints (optional)

Modified Keys:

  • img

  • img_shape

  • gt_seg_map (optional)

  • gt_bboxes (optional)

  • gt_keypoints (optional)

Added Key:

  • pad_shape

参数
  • crop_size (Union[int, Tuple[int, int]]) – Expected size after cropping with the format of (w, h). If set to an integer, then cropping width and height are equal to this integer.

  • auto_pad (bool) – Whether to pad the image if it’s smaller than the crop_size. Defaults to False.

  • pad_cfg (dict) – Base config for padding. Refer to mmcv.Pad for detail. Defaults to dict(type='Pad').

  • clip_object_border (bool) – Whether to clip the objects outside the border of the image. In some dataset like MOT17, the gt bboxes are allowed to cross the border of images. Therefore, we don’t need to clip the gt bboxes in these cases. Defaults to True.

transform(results: dict)dict[源代码]

Apply center crop on results.

参数

results (dict) – Result dict contains the data to transform.

返回

Results with CenterCropped image and semantic segmentation map.

返回类型

dict

Read the Docs v: latest
Versions
latest
stable
2.x
v2.1.0
v2.0.1
v2.0.0
1.x
v1.7.1
v1.7.0
v1.6.2
v1.6.1
v1.6.0
v1.5.3
v1.5.2_a
v1.5.1
v1.5.0
v1.4.8
v1.4.7
v1.4.6
v1.4.5
v1.4.4
v1.4.3
v1.4.2
v1.4.1
v1.4.0
v1.3.18
v1.3.17
v1.3.16
v1.3.15
v1.3.14
v1.3.13
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.