Shortcuts

mmcv.ops.sparse_pool 源代码

# Copyright 2019 Yan Yan
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# import sparse_functional as Fsp
# import sparse_ops as ops
from .sparse_functional import indice_maxpool
from .sparse_modules import SparseModule
from .sparse_ops import get_conv_output_size, get_indice_pairs
from .sparse_structure import SparseConvTensor


class SparseMaxPool(SparseModule):

    def __init__(self,
                 ndim,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 subm=False):
        super().__init__()
        if not isinstance(kernel_size, (list, tuple)):
            kernel_size = [kernel_size] * ndim
        if not isinstance(stride, (list, tuple)):
            stride = [stride] * ndim
        if not isinstance(padding, (list, tuple)):
            padding = [padding] * ndim
        if not isinstance(dilation, (list, tuple)):
            dilation = [dilation] * ndim

        self.ndim = ndim
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.subm = subm
        self.dilation = dilation

    def forward(self, input):
        assert isinstance(input, SparseConvTensor)
        features = input.features
        device = features.device
        indices = input.indices
        spatial_shape = input.spatial_shape
        batch_size = input.batch_size
        if not self.subm:
            out_spatial_shape = get_conv_output_size(spatial_shape,
                                                     self.kernel_size,
                                                     self.stride, self.padding,
                                                     self.dilation)
        else:
            out_spatial_shape = spatial_shape
        outids, indice_pairs, indice_pairs_num = get_indice_pairs(
            indices, batch_size, spatial_shape, self.kernel_size, self.stride,
            self.padding, self.dilation, 0, self.subm)

        out_features = indice_maxpool(features, indice_pairs.to(device),
                                      indice_pairs_num.to(device),
                                      outids.shape[0])
        out_tensor = SparseConvTensor(out_features, outids, out_spatial_shape,
                                      batch_size)
        out_tensor.indice_dict = input.indice_dict
        out_tensor.grid = input.grid
        return out_tensor


[文档]class SparseMaxPool2d(SparseMaxPool): def __init__(self, kernel_size, stride=1, padding=0, dilation=1): super().__init__(2, kernel_size, stride, padding, dilation)
[文档]class SparseMaxPool3d(SparseMaxPool): def __init__(self, kernel_size, stride=1, padding=0, dilation=1): super().__init__(3, kernel_size, stride, padding, dilation)
Read the Docs v: stable
Versions
latest
stable
2.x
v2.0.1
v2.0.0
1.x
v1.7.1
v1.7.0
v1.6.2
v1.6.1
v1.6.0
v1.5.3
v1.5.2_a
v1.5.1
v1.5.0
v1.4.8
v1.4.7
v1.4.6
v1.4.5
v1.4.4
v1.4.3
v1.4.2
v1.4.1
v1.4.0
v1.3.18
v1.3.17
v1.3.16
v1.3.15
v1.3.14
v1.3.13
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.