Shortcuts

QueryAndGroup

class mmcv.ops.QueryAndGroup(max_radius: float, sample_num: int, min_radius: float = 0.0, use_xyz: bool = True, return_grouped_xyz: bool = False, normalize_xyz: bool = False, uniform_sample: bool = False, return_unique_cnt: bool = False, return_grouped_idx: bool = False)[源代码]

Groups points with a ball query of radius.

参数
  • max_radius (float) – The maximum radius of the balls. If None is given, we will use kNN sampling instead of ball query.

  • sample_num (int) – Maximum number of features to gather in the ball.

  • min_radius (float, optional) – The minimum radius of the balls. Default: 0.

  • use_xyz (bool, optional) – Whether to use xyz. Default: True.

  • return_grouped_xyz (bool, optional) – Whether to return grouped xyz. Default: False.

  • normalize_xyz (bool, optional) – Whether to normalize xyz. Default: False.

  • uniform_sample (bool, optional) – Whether to sample uniformly. Default: False

  • return_unique_cnt (bool, optional) – Whether to return the count of unique samples. Default: False.

  • return_grouped_idx (bool, optional) – Whether to return grouped idx. Default: False.

forward(points_xyz: torch.Tensor, center_xyz: torch.Tensor, features: Optional[torch.Tensor] = None)Union[torch.Tensor, Tuple][源代码]
参数
  • points_xyz (torch.Tensor) – (B, N, 3) xyz coordinates of the points.

  • center_xyz (torch.Tensor) – (B, npoint, 3) coordinates of the centriods.

  • features (torch.Tensor) – (B, C, N) The features of grouped points.

返回

(B, 3 + C, npoint, sample_num) Grouped concatenated coordinates and features of points.

返回类型

Tuple | torch.Tensor

Read the Docs v: stable
Versions
latest
stable
2.x
v2.0.1
v2.0.0
1.x
v1.7.1
v1.7.0
v1.6.2
v1.6.1
v1.6.0
v1.5.3
v1.5.2_a
v1.5.1
v1.5.0
v1.4.8
v1.4.7
v1.4.6
v1.4.5
v1.4.4
v1.4.3
v1.4.2
v1.4.1
v1.4.0
v1.3.18
v1.3.17
v1.3.16
v1.3.15
v1.3.14
v1.3.13
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.