Shortcuts

mmcv.ops.soft_nms

mmcv.ops.soft_nms(boxes: Union[torch.Tensor, numpy.ndarray], scores: Union[torch.Tensor, numpy.ndarray], iou_threshold: float = 0.3, sigma: float = 0.5, min_score: float = 0.001, method: str = 'linear', offset: int = 0)Tuple[Union[torch.Tensor, numpy.ndarray], Union[torch.Tensor, numpy.ndarray]][源代码]

Dispatch to only CPU Soft NMS implementations.

The input can be either a torch tensor or numpy array. The returned type will always be the same as inputs.

参数
  • boxes (torch.Tensor or np.ndarray) – boxes in shape (N, 4).

  • scores (torch.Tensor or np.ndarray) – scores in shape (N, ).

  • iou_threshold (float) – IoU threshold for NMS.

  • sigma (float) – hyperparameter for gaussian method

  • min_score (float) – score filter threshold

  • method (str) – either ‘linear’ or ‘gaussian’

  • offset (int, 0 or 1) – boxes’ width or height is (x2 - x1 + offset).

返回

kept dets (boxes and scores) and indice, which always have the same data type as the input.

返回类型

tuple

示例

>>> boxes = np.array([[4., 3., 5., 3.],
>>>                   [4., 3., 5., 4.],
>>>                   [3., 1., 3., 1.],
>>>                   [3., 1., 3., 1.],
>>>                   [3., 1., 3., 1.],
>>>                   [3., 1., 3., 1.]], dtype=np.float32)
>>> scores = np.array([0.9, 0.9, 0.5, 0.5, 0.4, 0.0], dtype=np.float32)
>>> iou_threshold = 0.6
>>> dets, inds = soft_nms(boxes, scores, iou_threshold, sigma=0.5)
>>> assert len(inds) == len(dets) == 5
Read the Docs v: stable
Versions
latest
stable
2.x
v2.0.1
v2.0.0
1.x
v1.7.1
v1.7.0
v1.6.2
v1.6.1
v1.6.0
v1.5.3
v1.5.2_a
v1.5.1
v1.5.0
v1.4.8
v1.4.7
v1.4.6
v1.4.5
v1.4.4
v1.4.3
v1.4.2
v1.4.1
v1.4.0
v1.3.18
v1.3.17
v1.3.16
v1.3.15
v1.3.14
v1.3.13
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.