mmcv.ops.pixel_group 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import torch

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext', ['pixel_group'])

[文档]def pixel_group(score, mask, embedding, kernel_label, kernel_contour, kernel_region_num, distance_threshold): """Group pixels into text instances, which is widely used text detection methods. Arguments: score (np.array or Tensor): The foreground score with size hxw. mask (np.array or Tensor): The foreground mask with size hxw. embedding (np.array or Tensor): The embedding with size hxwxc to distinguish instances. kernel_label (np.array or Tensor): The instance kernel index with size hxw. kernel_contour (np.array or Tensor): The kernel contour with size hxw. kernel_region_num (int): The instance kernel region number. distance_threshold (float): The embedding distance threshold between kernel and pixel in one instance. Returns: pixel_assignment (List[List[float]]): The instance coordinate list. Each element consists of averaged confidence, pixel number, and coordinates (x_i, y_i for all pixels) in order. """ assert isinstance(score, (torch.Tensor, np.ndarray)) assert isinstance(mask, (torch.Tensor, np.ndarray)) assert isinstance(embedding, (torch.Tensor, np.ndarray)) assert isinstance(kernel_label, (torch.Tensor, np.ndarray)) assert isinstance(kernel_contour, (torch.Tensor, np.ndarray)) assert isinstance(kernel_region_num, int) assert isinstance(distance_threshold, float) if isinstance(score, np.ndarray): score = torch.from_numpy(score) if isinstance(mask, np.ndarray): mask = torch.from_numpy(mask) if isinstance(embedding, np.ndarray): embedding = torch.from_numpy(embedding) if isinstance(kernel_label, np.ndarray): kernel_label = torch.from_numpy(kernel_label) if isinstance(kernel_contour, np.ndarray): kernel_contour = torch.from_numpy(kernel_contour) pixel_assignment = ext_module.pixel_group(score, mask, embedding, kernel_label, kernel_contour, kernel_region_num, distance_threshold) return pixel_assignment