Shortcuts

mmcv.ops.multi_scale_deform_attn 源代码

# Copyright (c) OpenMMLab. All rights reserved.
import math
import warnings

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd.function import Function, once_differentiable

from mmcv import deprecated_api_warning
from mmcv.cnn import constant_init, xavier_init
from mmcv.cnn.bricks.registry import ATTENTION
from mmcv.runner import BaseModule
from ..utils import ext_loader

ext_module = ext_loader.load_ext(
    '_ext', ['ms_deform_attn_backward', 'ms_deform_attn_forward'])


class MultiScaleDeformableAttnFunction(Function):

    @staticmethod
    def forward(ctx, value, value_spatial_shapes, value_level_start_index,
                sampling_locations, attention_weights, im2col_step):
        """GPU version of multi-scale deformable attention.

        Args:
            value (Tensor): The value has shape
                (bs, num_keys, mum_heads, embed_dims//num_heads)
            value_spatial_shapes (Tensor): Spatial shape of
                each feature map, has shape (num_levels, 2),
                last dimension 2 represent (h, w)
            sampling_locations (Tensor): The location of sampling points,
                has shape
                (bs ,num_queries, num_heads, num_levels, num_points, 2),
                the last dimension 2 represent (x, y).
            attention_weights (Tensor): The weight of sampling points used
                when calculate the attention, has shape
                (bs ,num_queries, num_heads, num_levels, num_points),
            im2col_step (Tensor): The step used in image to column.

        Returns:
            Tensor: has shape (bs, num_queries, embed_dims)
        """

        ctx.im2col_step = im2col_step
        output = ext_module.ms_deform_attn_forward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            im2col_step=ctx.im2col_step)
        ctx.save_for_backward(value, value_spatial_shapes,
                              value_level_start_index, sampling_locations,
                              attention_weights)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        """GPU version of backward function.

        Args:
            grad_output (Tensor): Gradient
                of output tensor of forward.

        Returns:
             Tuple[Tensor]: Gradient
                of input tensors in forward.
        """
        value, value_spatial_shapes, value_level_start_index,\
            sampling_locations, attention_weights = ctx.saved_tensors
        grad_value = torch.zeros_like(value)
        grad_sampling_loc = torch.zeros_like(sampling_locations)
        grad_attn_weight = torch.zeros_like(attention_weights)

        ext_module.ms_deform_attn_backward(
            value,
            value_spatial_shapes,
            value_level_start_index,
            sampling_locations,
            attention_weights,
            grad_output.contiguous(),
            grad_value,
            grad_sampling_loc,
            grad_attn_weight,
            im2col_step=ctx.im2col_step)

        return grad_value, None, None, \
            grad_sampling_loc, grad_attn_weight, None


def multi_scale_deformable_attn_pytorch(value, value_spatial_shapes,
                                        sampling_locations, attention_weights):
    """CPU version of multi-scale deformable attention.

    Args:
        value (Tensor): The value has shape
            (bs, num_keys, mum_heads, embed_dims//num_heads)
        value_spatial_shapes (Tensor): Spatial shape of
            each feature map, has shape (num_levels, 2),
            last dimension 2 represent (h, w)
        sampling_locations (Tensor): The location of sampling points,
            has shape
            (bs ,num_queries, num_heads, num_levels, num_points, 2),
            the last dimension 2 represent (x, y).
        attention_weights (Tensor): The weight of sampling points used
            when calculate the attention, has shape
            (bs ,num_queries, num_heads, num_levels, num_points),

    Returns:
        Tensor: has shape (bs, num_queries, embed_dims)
    """

    bs, _, num_heads, embed_dims = value.shape
    _, num_queries, num_heads, num_levels, num_points, _ =\
        sampling_locations.shape
    value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes],
                             dim=1)
    sampling_grids = 2 * sampling_locations - 1
    sampling_value_list = []
    for level, (H_, W_) in enumerate(value_spatial_shapes):
        # bs, H_*W_, num_heads, embed_dims ->
        # bs, H_*W_, num_heads*embed_dims ->
        # bs, num_heads*embed_dims, H_*W_ ->
        # bs*num_heads, embed_dims, H_, W_
        value_l_ = value_list[level].flatten(2).transpose(1, 2).reshape(
            bs * num_heads, embed_dims, H_, W_)
        # bs, num_queries, num_heads, num_points, 2 ->
        # bs, num_heads, num_queries, num_points, 2 ->
        # bs*num_heads, num_queries, num_points, 2
        sampling_grid_l_ = sampling_grids[:, :, :,
                                          level].transpose(1, 2).flatten(0, 1)
        # bs*num_heads, embed_dims, num_queries, num_points
        sampling_value_l_ = F.grid_sample(
            value_l_,
            sampling_grid_l_,
            mode='bilinear',
            padding_mode='zeros',
            align_corners=False)
        sampling_value_list.append(sampling_value_l_)
    # (bs, num_queries, num_heads, num_levels, num_points) ->
    # (bs, num_heads, num_queries, num_levels, num_points) ->
    # (bs, num_heads, 1, num_queries, num_levels*num_points)
    attention_weights = attention_weights.transpose(1, 2).reshape(
        bs * num_heads, 1, num_queries, num_levels * num_points)
    output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) *
              attention_weights).sum(-1).view(bs, num_heads * embed_dims,
                                              num_queries)
    return output.transpose(1, 2).contiguous()


[文档]@ATTENTION.register_module() class MultiScaleDeformableAttention(BaseModule): """An attention module used in Deformable-Detr. `Deformable DETR: Deformable Transformers for End-to-End Object Detection. <https://arxiv.org/pdf/2010.04159.pdf>`_. Args: embed_dims (int): The embedding dimension of Attention. Default: 256. num_heads (int): Parallel attention heads. Default: 64. num_levels (int): The number of feature map used in Attention. Default: 4. num_points (int): The number of sampling points for each query in each head. Default: 4. im2col_step (int): The step used in image_to_column. Default: 64. dropout (float): A Dropout layer on `inp_identity`. Default: 0.1. batch_first (bool): Key, Query and Value are shape of (batch, n, embed_dim) or (n, batch, embed_dim). Default to False. norm_cfg (dict): Config dict for normalization layer. Default: None. init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. Default: None. """ def __init__(self, embed_dims=256, num_heads=8, num_levels=4, num_points=4, im2col_step=64, dropout=0.1, batch_first=False, norm_cfg=None, init_cfg=None): super().__init__(init_cfg) if embed_dims % num_heads != 0: raise ValueError(f'embed_dims must be divisible by num_heads, ' f'but got {embed_dims} and {num_heads}') dim_per_head = embed_dims // num_heads self.norm_cfg = norm_cfg self.dropout = nn.Dropout(dropout) self.batch_first = batch_first # you'd better set dim_per_head to a power of 2 # which is more efficient in the CUDA implementation def _is_power_of_2(n): if (not isinstance(n, int)) or (n < 0): raise ValueError( 'invalid input for _is_power_of_2: {} (type: {})'.format( n, type(n))) return (n & (n - 1) == 0) and n != 0 if not _is_power_of_2(dim_per_head): warnings.warn( "You'd better set embed_dims in " 'MultiScaleDeformAttention to make ' 'the dimension of each attention head a power of 2 ' 'which is more efficient in our CUDA implementation.') self.im2col_step = im2col_step self.embed_dims = embed_dims self.num_levels = num_levels self.num_heads = num_heads self.num_points = num_points self.sampling_offsets = nn.Linear( embed_dims, num_heads * num_levels * num_points * 2) self.attention_weights = nn.Linear(embed_dims, num_heads * num_levels * num_points) self.value_proj = nn.Linear(embed_dims, embed_dims) self.output_proj = nn.Linear(embed_dims, embed_dims) self.init_weights()
[文档] def init_weights(self): """Default initialization for Parameters of Module.""" constant_init(self.sampling_offsets, 0.) thetas = torch.arange( self.num_heads, dtype=torch.float32) * (2.0 * math.pi / self.num_heads) grid_init = torch.stack([thetas.cos(), thetas.sin()], -1) grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view( self.num_heads, 1, 1, 2).repeat(1, self.num_levels, self.num_points, 1) for i in range(self.num_points): grid_init[:, :, i, :] *= i + 1 self.sampling_offsets.bias.data = grid_init.view(-1) constant_init(self.attention_weights, val=0., bias=0.) xavier_init(self.value_proj, distribution='uniform', bias=0.) xavier_init(self.output_proj, distribution='uniform', bias=0.) self._is_init = True
[文档] @deprecated_api_warning({'residual': 'identity'}, cls_name='MultiScaleDeformableAttention') def forward(self, query, key=None, value=None, identity=None, query_pos=None, key_padding_mask=None, reference_points=None, spatial_shapes=None, level_start_index=None, **kwargs): """Forward Function of MultiScaleDeformAttention. Args: query (Tensor): Query of Transformer with shape (num_query, bs, embed_dims). key (Tensor): The key tensor with shape `(num_key, bs, embed_dims)`. value (Tensor): The value tensor with shape `(num_key, bs, embed_dims)`. identity (Tensor): The tensor used for addition, with the same shape as `query`. Default None. If None, `query` will be used. query_pos (Tensor): The positional encoding for `query`. Default: None. key_pos (Tensor): The positional encoding for `key`. Default None. reference_points (Tensor): The normalized reference points with shape (bs, num_query, num_levels, 2), all elements is range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area. or (N, Length_{query}, num_levels, 4), add additional two dimensions is (w, h) to form reference boxes. key_padding_mask (Tensor): ByteTensor for `query`, with shape [bs, num_key]. spatial_shapes (Tensor): Spatial shape of features in different levels. With shape (num_levels, 2), last dimension represents (h, w). level_start_index (Tensor): The start index of each level. A tensor has shape ``(num_levels, )`` and can be represented as [0, h_0*w_0, h_0*w_0+h_1*w_1, ...]. Returns: Tensor: forwarded results with shape [num_query, bs, embed_dims]. """ if value is None: value = query if identity is None: identity = query if query_pos is not None: query = query + query_pos if not self.batch_first: # change to (bs, num_query ,embed_dims) query = query.permute(1, 0, 2) value = value.permute(1, 0, 2) bs, num_query, _ = query.shape bs, num_value, _ = value.shape assert (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() == num_value value = self.value_proj(value) if key_padding_mask is not None: value = value.masked_fill(key_padding_mask[..., None], 0.0) value = value.view(bs, num_value, self.num_heads, -1) sampling_offsets = self.sampling_offsets(query).view( bs, num_query, self.num_heads, self.num_levels, self.num_points, 2) attention_weights = self.attention_weights(query).view( bs, num_query, self.num_heads, self.num_levels * self.num_points) attention_weights = attention_weights.softmax(-1) attention_weights = attention_weights.view(bs, num_query, self.num_heads, self.num_levels, self.num_points) if reference_points.shape[-1] == 2: offset_normalizer = torch.stack( [spatial_shapes[..., 1], spatial_shapes[..., 0]], -1) sampling_locations = reference_points[:, :, None, :, None, :] \ + sampling_offsets \ / offset_normalizer[None, None, None, :, None, :] elif reference_points.shape[-1] == 4: sampling_locations = reference_points[:, :, None, :, None, :2] \ + sampling_offsets / self.num_points \ * reference_points[:, :, None, :, None, 2:] \ * 0.5 else: raise ValueError( f'Last dim of reference_points must be' f' 2 or 4, but get {reference_points.shape[-1]} instead.') if torch.cuda.is_available() and value.is_cuda: output = MultiScaleDeformableAttnFunction.apply( value, spatial_shapes, level_start_index, sampling_locations, attention_weights, self.im2col_step) else: output = multi_scale_deformable_attn_pytorch( value, spatial_shapes, sampling_locations, attention_weights) output = self.output_proj(output) if not self.batch_first: # (num_query, bs ,embed_dims) output = output.permute(1, 0, 2) return self.dropout(output) + identity
Read the Docs v: v1.4.0
Versions
latest
stable
v1.4.0
v1.3.18
v1.3.17
v1.3.16
v1.3.15
v1.3.14
v1.3.13
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.