Shortcuts

Source code for mmcv.cnn.bricks.upsample

# Copyright (c) OpenMMLab. All rights reserved.
import inspect
from typing import Dict

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import xavier_init
from mmengine.registry import MODELS

MODELS.register_module('nearest', module=nn.Upsample)
MODELS.register_module('bilinear', module=nn.Upsample)


@MODELS.register_module(name='pixel_shuffle')
class PixelShufflePack(nn.Module):
    """Pixel Shuffle upsample layer.

    This module packs `F.pixel_shuffle()` and a nn.Conv2d module together to
    achieve a simple upsampling with pixel shuffle.

    Args:
        in_channels (int): Number of input channels.
        out_channels (int): Number of output channels.
        scale_factor (int): Upsample ratio.
        upsample_kernel (int): Kernel size of the conv layer to expand the
            channels.
    """

    def __init__(self, in_channels: int, out_channels: int, scale_factor: int,
                 upsample_kernel: int):
        super().__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.scale_factor = scale_factor
        self.upsample_kernel = upsample_kernel
        self.upsample_conv = nn.Conv2d(
            self.in_channels,
            self.out_channels * scale_factor * scale_factor,
            self.upsample_kernel,
            padding=(self.upsample_kernel - 1) // 2)
        self.init_weights()

    def init_weights(self):
        xavier_init(self.upsample_conv, distribution='uniform')

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.upsample_conv(x)
        x = F.pixel_shuffle(x, self.scale_factor)
        return x


[docs]def build_upsample_layer(cfg: Dict, *args, **kwargs) -> nn.Module: """Build upsample layer. Args: cfg (dict): The upsample layer config, which should contain: - type (str): Layer type. - scale_factor (int): Upsample ratio, which is not applicable to deconv. - layer args: Args needed to instantiate a upsample layer. args (argument list): Arguments passed to the ``__init__`` method of the corresponding conv layer. kwargs (keyword arguments): Keyword arguments passed to the ``__init__`` method of the corresponding conv layer. Returns: nn.Module: Created upsample layer. """ if not isinstance(cfg, dict): raise TypeError(f'cfg must be a dict, but got {type(cfg)}') if 'type' not in cfg: raise KeyError( f'the cfg dict must contain the key "type", but got {cfg}') cfg_ = cfg.copy() layer_type = cfg_.pop('type') if inspect.isclass(layer_type): upsample = layer_type # Switch registry to the target scope. If `upsample` cannot be found # in the registry, fallback to search `upsample` in the # mmengine.MODELS. else: with MODELS.switch_scope_and_registry(None) as registry: upsample = registry.get(layer_type) if upsample is None: raise KeyError(f'Cannot find {upsample} in registry under scope ' f'name {registry.scope}') if upsample is nn.Upsample: cfg_['mode'] = layer_type layer = upsample(*args, **kwargs, **cfg_) return layer