Source code for mmcv.cnn.bricks.wrappers
# Copyright (c) OpenMMLab. All rights reserved.
r"""Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/layers/wrappers.py # noqa: E501
Wrap some nn modules to support empty tensor input. Currently, these wrappers
are mainly used in mask heads like fcn_mask_head and maskiou_heads since mask
heads are trained on only positive RoIs.
"""
import math
import torch
import torch.nn as nn
from mmengine.registry import MODELS
from torch.nn.modules.utils import _pair, _triple
if torch.__version__ == 'parrots':
TORCH_VERSION = torch.__version__
else:
# torch.__version__ could be 1.3.1+cu92, we only need the first two
# for comparison
TORCH_VERSION = tuple(int(x) for x in torch.__version__.split('.')[:2])
def obsolete_torch_version(torch_version, version_threshold) -> bool:
return torch_version == 'parrots' or torch_version <= version_threshold
class NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x: torch.Tensor, new_shape: tuple) -> torch.Tensor:
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad: torch.Tensor) -> tuple:
shape = ctx.shape
return NewEmptyTensorOp.apply(grad, shape), None
[docs]@MODELS.register_module('Conv', force=True)
class Conv2d(nn.Conv2d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride, self.dilation):
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
[docs]@MODELS.register_module('Conv3d', force=True)
class Conv3d(nn.Conv3d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride, self.dilation):
o = (i + 2 * p - (d * (k - 1) + 1)) // s + 1
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
[docs]@MODELS.register_module()
@MODELS.register_module('deconv')
class ConvTranspose2d(nn.ConvTranspose2d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-2:], self.kernel_size,
self.padding, self.stride,
self.dilation, self.output_padding):
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
[docs]@MODELS.register_module()
@MODELS.register_module('deconv3d')
class ConvTranspose3d(nn.ConvTranspose3d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
if obsolete_torch_version(TORCH_VERSION, (1, 4)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_channels]
for i, k, p, s, d, op in zip(x.shape[-3:], self.kernel_size,
self.padding, self.stride,
self.dilation, self.output_padding):
out_shape.append((i - 1) * s - 2 * p + (d * (k - 1) + 1) + op)
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)
[docs]class MaxPool2d(nn.MaxPool2d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
# PyTorch 1.9 does not support empty tensor inference yet
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0:
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-2:], _pair(self.kernel_size),
_pair(self.padding), _pair(self.stride),
_pair(self.dilation)):
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
o = math.ceil(o) if self.ceil_mode else math.floor(o)
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
return empty
return super().forward(x)
[docs]class MaxPool3d(nn.MaxPool3d):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
# PyTorch 1.9 does not support empty tensor inference yet
if obsolete_torch_version(TORCH_VERSION, (1, 9)) and x.numel() == 0:
out_shape = list(x.shape[:2])
for i, k, p, s, d in zip(x.shape[-3:], _triple(self.kernel_size),
_triple(self.padding),
_triple(self.stride),
_triple(self.dilation)):
o = (i + 2 * p - (d * (k - 1) + 1)) / s + 1
o = math.ceil(o) if self.ceil_mode else math.floor(o)
out_shape.append(o)
empty = NewEmptyTensorOp.apply(x, out_shape)
return empty
return super().forward(x)
[docs]class Linear(torch.nn.Linear):
[docs] def forward(self, x: torch.Tensor) -> torch.Tensor:
# empty tensor forward of Linear layer is supported in Pytorch 1.6
if obsolete_torch_version(TORCH_VERSION, (1, 5)) and x.numel() == 0:
out_shape = [x.shape[0], self.out_features]
empty = NewEmptyTensorOp.apply(x, out_shape)
if self.training:
# produce dummy gradient to avoid DDP warning.
dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0
return empty + dummy
else:
return empty
return super().forward(x)