Shortcuts

Source code for mmcv.ops.corner_pool

# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.utils import digit_version
from torch import Tensor, nn

_mode_dict = {'top': 0, 'bottom': 1, 'left': 2, 'right': 3}


def _corner_pool(x: Tensor, dim: int, flip: bool) -> Tensor:
    size = x.size(dim)
    output = x.clone()

    ind = 1
    while ind < size:
        if flip:
            cur_start = 0
            cur_len = size - ind
            next_start = ind
            next_len = size - ind
        else:
            cur_start = ind
            cur_len = size - ind
            next_start = 0
            next_len = size - ind

        # max_temp should be cloned for backward computation
        max_temp = output.narrow(dim, cur_start, cur_len).clone()
        cur_temp = output.narrow(dim, cur_start, cur_len)
        next_temp = output.narrow(dim, next_start, next_len)

        cur_temp[...] = torch.where(max_temp > next_temp, max_temp, next_temp)

        ind = ind << 1

    return output


[docs]class CornerPool(nn.Module): """Corner Pooling. Corner Pooling is a new type of pooling layer that helps a convolutional network better localize corners of bounding boxes. Please refer to `CornerNet: Detecting Objects as Paired Keypoints <https://arxiv.org/abs/1808.01244>`_ for more details. Code is modified from https://github.com/princeton-vl/CornerNet-Lite. Args: mode (str): Pooling orientation for the pooling layer - 'bottom': Bottom Pooling - 'left': Left Pooling - 'right': Right Pooling - 'top': Top Pooling Returns: Feature map after pooling. """ cummax_dim_flip = { 'bottom': (2, False), 'left': (3, True), 'right': (3, False), 'top': (2, True), } def __init__(self, mode: str): super().__init__() assert mode in self.cummax_dim_flip self.mode = mode
[docs] def forward(self, x: Tensor) -> Tensor: if (torch.__version__ != 'parrots' and digit_version(torch.__version__) >= digit_version('1.5.0')): dim, flip = self.cummax_dim_flip[self.mode] if flip: x = x.flip(dim) pool_tensor, _ = torch.cummax(x, dim=dim) if flip: pool_tensor = pool_tensor.flip(dim) return pool_tensor else: dim, flip = self.cummax_dim_flip[self.mode] return _corner_pool(x, dim, flip)