Shortcuts

Source code for mmcv.ops.tin_shift

# Copyright (c) OpenMMLab. All rights reserved.
# Code reference from "Temporal Interlacing Network"
# https://github.com/deepcs233/TIN/blob/master/cuda_shift/rtc_wrap.py
# Hao Shao, Shengju Qian, Yu Liu
# shaoh19@mails.tsinghua.edu.cn, sjqian@cse.cuhk.edu.hk, yuliu@ee.cuhk.edu.hk

import torch
import torch.nn as nn
from torch.autograd import Function

from ..utils import ext_loader

ext_module = ext_loader.load_ext('_ext',
                                 ['tin_shift_forward', 'tin_shift_backward'])


class TINShiftFunction(Function):

    @staticmethod
    def forward(ctx, input, shift):
        if input.size(0) != shift.size(0):
            raise ValueError(
                'The first dim (batch) of `input` and `shift` should be '
                f'same, but got {input.size(0)} and {shift.size(0)}.')
        C = input.size(2)
        num_segments = shift.size(1)
        if C // num_segments <= 0 or C % num_segments != 0:
            raise ValueError('C should be a multiple of num_segments, '
                             f'but got C={C} and num_segments={num_segments}.')

        ctx.save_for_backward(shift)

        out = torch.zeros_like(input)
        ext_module.tin_shift_forward(input, shift, out)

        return out

    @staticmethod
    def backward(ctx, grad_output):

        shift = ctx.saved_tensors[0]
        data_grad_input = grad_output.new(*grad_output.size()).zero_()
        shift_grad_input = shift.new(*shift.size()).zero_()
        ext_module.tin_shift_backward(grad_output, shift, data_grad_input)

        return data_grad_input, shift_grad_input


tin_shift = TINShiftFunction.apply


[docs]class TINShift(nn.Module): """Temporal Interlace Shift. Temporal Interlace shift is a differentiable temporal-wise frame shifting which is proposed in "Temporal Interlacing Network" Please refer to `Temporal Interlacing Network <https://arxiv.org/abs/2001.06499>`_ for more details. Code is modified from https://github.com/mit-han-lab/temporal-shift-module """
[docs] def forward(self, input, shift): """Perform temporal interlace shift. Args: input (torch.Tensor): Feature map with shape [N, num_segments, C, H * W]. shift (torch.Tensor): Shift tensor with shape [N, num_segments]. Returns: Feature map after temporal interlace shift. """ return tin_shift(input, shift)